Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.

نویسندگان

  • Veikko F Geyer
  • Frank Jülicher
  • Jonathon Howard
  • Benjamin M Friedrich
چکیده

The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this "cell-body rocking" provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum

The interphase flagellar apparatus of the green alga Chlorogonium elongatum resembles that of Chlamydomonas reinhardtii in the possession of microtubular rootlets and striated fibers. However, Chlorogonium, unlike Chlamydomonas, retains functional flagella during cell division. In dividing cells, the basal bodies and associated structures are no longer present at the flagellar bases, but have a...

متن کامل

Coordinated beating of algal flagella is mediated by basal coupling.

Cilia and flagella often exhibit synchronized behavior; this includes phase locking, as seen in Chlamydomonas, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase synchrony of nearby swimming spermatozoa, it has been a working hypothesis that synchrony arises from hydrodynamic interactions between beating filaments....

متن کامل

Subject Areas: Fluid Dynamics, Biological Physics A Viewpoint on: Flagellar Synchronization Independent of Hydrodynamic Interactions

In 1665, not long after his invention of the pendulum clock, Christiaan Huygens (1629–1695) in The Hague reported on “an odd kind of sympathy,” referring to the tendency of two clocks mounted on the same wooden beam to synchronize their pendulum movements such that they beat in opposite phases [1]. At first he suspected that induced air currents caused this synchronization, but he then correctl...

متن کامل

Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies

The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagell...

متن کامل

Hydrodynamic synchronization of flagellar oscillators

In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the theory synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers prompts swimming strokes that break symmetry to facilitate hydrodyna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 45  شماره 

صفحات  -

تاریخ انتشار 2013